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PSEUDOSPECTRAL METHOD 
FOR THE "GOOD" BOUSSINESQ EQUATION 

J. DE FRUTOS, T. ORTEGA, AND J. M. SANZ-SERNA 

ABSTRACT. We prove the nonlinear stability and convergence of a fully discrete, 
pseudospectral scheme for the "good" Boussinesq equation utt = -uXXXX + 

uXX + (u2)XX . Numerical comparisons with finite difference schemes are also 
reported. 

1. INTRODUCTION 

The "good" Boussinesq (GB) equation 

Utt =- UXXXX + UXX + (U2)xx 

is similar to the well-known Korteweg-de Vries (KdV) and cubic Schrodinger 
(CS) equation in that it provides a balance between dispersion and nonlinearity 
that leads to the existence of solitons. However, the GB equation possesses some 
remarkable peculiarities. For instance, solitary waves (i) only exist for a finite 
range of velocities, (ii) can merge into a single solitary wave, (iii) can interact 
to give rise to so-called anti-solitons [10]. 

The numerical and analytical study of the GB equation is only beginning. 
Two recent papers are [9, 10]. The first of these articles provides an exact for- 
mula for the interaction of solitons. The second is devoted to an analysis of 
the soliton interaction mechanism and to the existence and regularity of solu- 
tions of the initial-value problem. While numerical experiments are reported in 
[9], little analysis is given there of the stability and convergence of the methods 
employed. 

In [11] two of the present authors have shown the nonlinear stability and 
convergence of a family of finite difference schemes for the numerical solution of 
the GB equation. While these schemes may provide a useful integration method 
when high accuracy is not required, finite difference algorithms are often (see, 
e.g., [ 15, 17]) judged not to be competitive with their spectral and pseudospectral 
counterparts. The aim of the present work is the analysis and assessment of a 
pseudospectral time-discrete method for the GB equation. General background 
references are [5, 1, 6, 16]. 
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Throughout the paper, we consider that, at each time level, the algorithms 
provide a vector U of approximations to nodal values of the theoretical so- 
lution u. Hence, errors are measured by means of discrete norms. In an 
alternative point of view, the algorithms could have been seen as providing, 
at each time level, a trigonometric polynomial that approximates u over the 
spatial domain. It would not be difficult to translate the discrete-norm bounds 
obtained in this paper into continuous-norm bounds for the difference between 
u and the trigonometric interpolant of the discrete solution U. 

Our estimates for the global error are derived via the "stability plus consis- 
tency" approach. The main problem encountered lies in the stability study of 
the aliasing error in the nonlinear term. To alleviate these difficulties, the anal- 
ysis is carried out after twice integrating the differential equation with respect 
to x, so as to remove the derivatives occurring in the nonlinear term. This is 
roughly equivalent to the use of negative Sobolev norms (see the remark after 
Theorem 4.2). 

The paper is organized as follows. In ?2 we present the problem to be solved 
and the numerical method. In ?3 we study the energy norm, which is the key 
ingredient in the stability and convergence analysis of ?4. Finally, ?5 is devoted 
to numerical experiments. 

2. A NUMERICAL METHOD 

We consider the periodic problem 

(2.1) ut = -uXX + uX 
+ (U2) x, -oo < X < oo, 0 < t < T < oo, 

(2.2) u(x, t) = u(x + 1, t), -oo <x<oo O<t< TT 

(2.3) u(x, 0) =u(x), -Do < x < oo, 

(2.4) ut(x, 0) 0 v(x) -00 < x < 0o, 

where the data u0, v0 are 1-periodic functions, which are assumed to be 
smooth enough for (2.1)-(2.4) to have a unique solution, classical or generalized 
(see [10]). While, for simplicity, we have chosen the period in (2.2) to be 1, 
it is clear that what follows can be readily extended to cover the case of an 
arbitrary period. 

We now define our numerical method. If J is a positive integer, we set 
h = 1/(2J) and consider the mesh points xj = jh, j is an integer. We denote 
by Zh the space of real, 1-periodic functions defined on the mesh. Thus each 
element V E Zh is a sequence {V}0j=o 1 with Vj 

= 
Vj+2J 

X j = 0, X1 + 1. X 

The notation [V]? refers to the pth discrete Fourier coefficient of V, i.e., 

[V]P = 1 JV exp(-27ripjh), -J <p < J, 
0IJ?2J 
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where the double prime in the summation means that the first and last terms 
are halved. The recovery of V from its Fourier coefficients is achieved by the 
inverse discrete Fourier transorm 

Vj = V*(xj), j=O.A ,.... 

where V* (x) is the trigonometric interpolant of V given by 

(2.5) V*(x)= E [V]p exp(27ripx), -oo x < oo. 
-J<p<J 

Differentiation of (2.5) with respect to x and evaluation at the mesh points 
lead to the following definition of the standard second difference pseudospectral 

operator D2 mapping Zh into itself: 

(D 2V)j = E [V] (27rip)2 exp(27ripjh), 
(2.6) -J<p<J 

V E Z+h X i 1. 

Of course, equality (2.6) can be written as the following simple formula for the 
Fourier coefficients: 

(2.7) [D2V] = (27rip) 2[V], -J <P < J. 
4 2 2 The operator D in Zh is, by definition, the composition D D 

Next, let k denote a parameter 0 < k < T and consider the time levels 
tn = nk, n = 0, 1, ..., N, with N = [T/k]. In the sequel a superscript 
n denotes a quantity associated with time level tn. With these notations, we 
consider the pseudospectral scheme 

(un+l _2Un + Un-1 )/k2 

(2.8) ~4 n+l1 U 4n 2Un 2Un)2 (2. 8) - 1~{D~U + 2D4Un + D4Un 1} + D U + D (U), 

n =0, 1, ...,~ N - 1, 

with initial values 

(2.9) U? =, 

(2.10) (U1 - U?)/k f=, 

where a, 8 E Z are given approximations to rhu?, rhv?, the grid restrictions 
of the functions u0 and v0 in (2.3)-(2.4). The elements Un are, of course, 
meant to approximate the grid restriction u n = rhun, where un = u(., tn) . 

For implementation purposes, it is best to Fourier-transform (2.8) to get, 
after taking (2.7) into account, 

([Un+l]p -2 [Un]- + [Un-,1 ]^)Ik 2 
n+1 ~~- nl-i 2 - 

= (27rip) {[U ]7 + 2[U)]} + , U- I ? 

+ (27rip)2{[Un]p + [(Un)2]p } -J < p < J. 
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The last equations, for each p, give [Un+1]p in terms of [Un]p, [Uns-], 
and [(Un)2]-. Therefore, if [Un], [Uni ] are in storage, the computation of 

the solution Un+l requires the computation of the Fourier transform of (Un)2, 
plus the computation of an inverse Fourier transform to recover Un+ from its 
Fourier coefficients. Of course, in practice, 2J is chosen to be of the form 2m, 
m an integer, and the transforms are performed by FFT techniques [2]. 

The weights 1/4, 1/2, 1/4 of D4Un+l1 D4Un D4Un-1 in(2.8)have been 
chosen for well-known accuracy reasons, but clearly other choices of weights 
are possible and can be analyzed by using the techniques below (cf. [11]). Also 
note that the time-continuous version of (2.8) is appealing when combined with 
the use of a standard ODE package. The analysis of such a time-continuous 
algorithm can be done along the lines of the study presented in this paper of 
the fully-discrete method (2.8). 

3. THE ENERGY NORM 

The convergence analysis to be carried out in the next section is based on the 
use of an appropriate energy norm for the discrete solution Un. In order to 
motivate our choice of energy norm, it is useful to consider the linear problem 
given by the principal part of (2.1), 

(3. 1) utt = -U xxxx X -xo < x < oo , 0 < t < T < x, 

along with (2.2)-(2.4). 
We denote by L2 the usual space of square-integrable 1-periodic functions, 

endowed with the standard norm I jj and inner product (, .). Furthermore, 
we denote by ax the operator d2/dx2 and by I the average functional 

1 

1(v) = 1 v(x) dx. 

If v is a function in L 2, Fourier analysis easily shows that there is a unique 
function Ax 2V E L2 such that 

(3.2) axO(x 2v) = v - 1(v), l(0X v) = I(v). 

We apply the operator ax2 to (3.1) and take the inner product with b ut 
to get 

(ax)utt, &x ut) = -(ax Ax U). 

Integration by parts yields 

(aX utt , ax 2t) + (u, ut) = (u, 1(ut)) 

or 

2 d {yIIx u2tiI2 + IIUI12j = l(u)l(ut) = l(u)(G9.x Ud) 

< 1 
{I(9-2utII2 + IIUII2y 
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Now the Gronwall lemma leads to an estimate 

I~a;u~I2 +lul2 ?c{I0120112 + IIu0II2ui, 0?< t ? T, lla,'u'll, + IIUII' < C1II(9;'Vl2 + 11 l2 

for the solutions of the problem (3.1), (2.2)-(2.4). This shows that the problem 
is well posed in the following energy norm for pairs (v, U) E L2 x L2 

(3.3) II(v, u)IIE = (IlO22v 12 + l|uII2)1/2 

To construct a discrete analogue of (3.3), we begin by defining the operator 
D in Zh such that (cf. (3.2)), 

(3.4) D2(D 2(V)) = V - [V]O1, [D 2V]J = [V]o 

Here and later, 1 represents the grid function that takes the value 1 at every 
grid point. Fourier analysis reveals once more that (3.4) uniquely defines D 2V. 

Namely, the Fourier coefficients of D 2V are defined by 

(3.5) [D 2V]V = (27rip)2[V], p = ?1, +2, ... i, 

and the second condition in (3.4). This Fourier representation also shows that 
2 2 D commutes with D 
Next, if (V, V*) E Zh x Zhy~ we set 

(3.6) Qk(VV )= jjD (V-V*)/k12 + i(IV,12 +2(VV )+IIV 112), 
2 

where I I denotes the standard discrete L 2-norm 

lIVII2= h VJ2 
O<j?2J 

and (., .) represents the corresponding inner product. (Note that the same 
symbols (, -), I I are used for the continuous and discrete cases, but no 
confusion is possible.) The operators D 2 , D D2 are clearly selfadjoint 
with respect to (., -). 

Proposition. For (V, V*) E Zh x Zh we have 

k(V, V*) < llD-2(V - V*)/kl12 + I(I1V,12 + 1 IIV*112) (3.7) ?< K(r)Qk(V v), 

4 22 

where K(r) = (4 + ir r )/4, with r the mesh ratio r = k/h2. 

Proof. We employ the technique of the proof of Proposition 3.1 of [111. The 
first inequality in (3.7) is obvious. To prove the second, we introduce the 
following quadratic form Pk in Zh x Zh: 

Pk(V, V*) = IID -2(V - V*)/kll2 + I 
lVll2 + 

I IIV*112 

and compare the eigenvalues/functions of Pk and Qk . 
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From (3.6), the selfadjoint operator in Zh x Zh associated with Qk may be 
written in block form as 

k-2D-4 + 14I -k-2 D-4 + 'I 2 2 ~ 
~~~~~~4 

L-k -2D4+'I k 4D + j 
where D is the ~ jc;~?~ 4 V kD 4 

4 22 where D4 is the composition D D . Therefore, if (V, V*) is an eigen- 
function associated with the eigenvalue A, then 

k-2D-4V+ iV-k-2D-4V* + IV*= AV 

4 4 - -k -2D-4 V+ 4V + k-2D-4V* + I V* = AV*. 

By adding and subtracting these equations we obtain 

(3.8) (V+V*) = A(V+V*), 

(3.9) k 2D 4(V - V*) = y(V - V*) 

When eigenfunctions with V = V* are looked for, (3.9) holds and (3.8) re- 
veals that A = 1/2 is an eigenvalue with multiplicity dim(Zh) = 2J. On the 
other hand, if eigenfunctions with V = -V* are sought, (3.8) holds and (3.9) 
implies that A is an eigenvalue of 2k 2D 4 and V the associated eigenfunc- 
tion. 

Turning now to Pk, a similar argument yields that the eigenvalues/functions 
of Pk are, on the one hand, { 1/2, (V, V*)}, V arbitrary, and, on the other 
hand, {1/2 + 5u, (V, -V*)}, with A E Spec(2k -2D ) and V the associated 
eigenfunction. Since Pk. Qk possess a common set of eigenfunctions, the 
second inequality in (3.7) is equivalent to the condition 

4 2 
A(Pk) < [(4 + 7X r )/4]I(Qk) 

for the corresponding eigenvalues, i.e., 

(3.10) jt + 1/2 < [(4 + 7r2r )/4],u, U E Spec(2k-2D-4) 

Now (3.10) is easily seen to hold, after noticing that (3.4)-(3.5) imply that the 
eigenvalues of D-2 are 1 and 1/(-2rp) , p = +1, +2, ... ., (J- 1 ), J. 0 

As a first consequence of the proposition, note that Qk is positive definite 
and that it is therefore possible to define a discrete energy norm by 

(3.11) II(V, V*)IIE = Qk(V V*) 1/2 (V, V*) E Zh x Zh. 

Furthermore, note that (3.6) implies that the energy norm is equivalent to the 
Sobolev norm (cf. (3.3)) 

{11D2(V - V*)/k112 + 'HVII2 + IIV* 112}11/2. 

The equivalence is uniform in k, h, provided that the grids are refined subject 
to a restriction 

(3.12) rmax := sup(k/h 2) < oco. 
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4. NONLINEAR STABILITY AND CONVERGENCE 

We now investigate the nonlinear stability of the algorithm (2.8). To this end, 
let V?, V, ... , VN and W , W , ... , WN be two sequences of elements Vy, 
Wn E Z h X n = , 1, ..., N, and define the residuals 

F V? -a, 

1 =V1 -a-k , 
(4.1) 

Fn+1 k-2(vn+l - 2Vn + Vn-1) + 1{D'Vn+1 + 2D V + D 4V } 

2 n 2 n 2 
-D V _-D (V) n= 1,2,...,N-1, 

and 

G0 W0-a G? W? - 

G1 =W1 a- kfi, 
(4.2) Gn+1 k-2(Wn+l - 2Wn +Wn-1) + I{D4Wn+l + 2D W +D Wn} 

-D2Wn-D2(Wn)2 n = 1, 2, ...,N-1. 

Thus, {Vn}, {Wn} can be viewed as perturbed solutions of (2.8) with {Fn}, 

{G n} the corresponding perturbations. The stability analysis consists of esti- 

mating the size of the differences Vn - Wn in terms of the size of the differences 
Fn _ n. 

Theorem 4.1. Assume that (i) the grids are refined according to (3.12) and (ii) 
the, possibly generalized, solution u of (2.1)-(2.4) is a bounded function on 
0 < x < 1, 0 < t < T. Let ,u be an arbitrary positive number, and set 

M = max{u: 0 < x < 1, 0 < t < T}. 

Under these hypotheses, there exist a constant ko, depending only on rmax and 
a constant S, depending on rmax I u, and M, such that if {Vn }, {Wn }, {Fn }, 
{G n} are as above and 

(4.3) max II(Vn+l - Un+1 Vn un) 
/2 

< ph1/2 (4.3) 
0~<n<N- 1 - Vu H ~ h 

(4.4) max II(Wn+l _ U n+1 Wn _ un)IIE < puh1/2 

then, for k < ko, 

max ||I(Vn+1l Wn+1 Vn Wn)IIE 
0<n<N-1 

(4.5) <exp(ST){lF1 -G',F0-G0)HIE+ E kjjD 2(Fn-G n)H}. 
2<n<N 

Proof. With the abbreviations en = Vn- Wn, In = Fn-Gn n = 0 1 N 
after subtracting (4.1) and (4.2), we get, for n = 1, 2, ... , N - 1, 

k (e - 2en + en-1) + I {D4en+1 + 2D 4en + D4 n-1} 

-D2n 2 
D2[(Vn)2 _ (Wn)2] In+1 
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Application of the operator D 2 to the previous equality and some rearrange- 
ment lead to 

k-2(D 
-2 n+ 2D-2en +e D2 en-) + '{D 2en+ + 2D e +D e n} 

(4.6) =e - [e n1 + (Vn )n2 _ (Wn 
2 

-[(Vn)2 _(Wn)2]-l - D -21n+ 2 n+1 n 2 - 
n 1. 

We now take the inner product of (4.6) and D (en+ - en) + D 2(en - e -1 

and in the result rearrange the left-hand side and apply Cauchy-Schwarz to the 

right-hand side. This results in 

(4.7) 

Qk(e e , Qk(e e e ) + 'I[en+1]^ + 2[en- [ n-1 
+ {[D 2(en+l - e n)]- + [D-2 (en - en-l)]- 

< Ile -[e ]01 + (Vn)2 _ (Wn)2 _ [(Vn)2 - (Wn)2]-l - D -21n+l 

+ (D -2(en+l - en )I + HID-2(en - e n-1)I), n = 1, 2, .. ., N- 1. 
Now the definition of Qk implies 

|D -2(V-V*)|| < k[Qk(V, V*)] /, Vy 
V* E Zh' 

and therefore (4.7) leads to 

I(en+1 , en)E_ I-(e 
n en )IIE 

' klf[en+l]0 + 2[e ]n + [en-lf^}l 

(4.8) + kilen - [en], 1 + (Vn)2 (Wn)2 

-[(Vn)2 _ (Wn)2]-l + D -21n+1 II 

n = 1 , 2, ... ,N- 1. 
The proposition of the previous section shows that 

'Ien+l,^ + [e n,^l < C I I (e n+1, e n)l, I ,2*** -1 
lln_[n0 11 21ee )11E, n = 1, 2, ..., N - 1, 

where C1, C2 are constants depending only on rmax. On the other hand, in 

view of (4.3)-(4.4), 
II(Vn)2 _ (Wn)211 < I?(Vn + Wn)ll0Ol e 11 

? {HvIn _ Unll + -IWn _ Unll + 21Unllc}lle 11 

< {2M + h- 112,Vn _ un I + h-1/2H1Wn _ un }H1le nI 

? {2MA+fh- 1/2C2,t}je nI, n = 1, 2, ..., N- 1, 
where C2 is another constant depending only on rmax . On using these estimates 

in (4.8) we obtain 

(1 - Cik)l I (e n+l, en )IIE < (1 + C4k)ll(e , en1 )IIE + 1D2en+lII, 
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where C4 depends on , M, rax The discrete Gronwall lemma now implies 
(4.5). 1l 

Of importance is the fact that the stability bound (4.5) does not hold for 
{yf}, {Wn } arbitrary, but only for discrete solutions {Vn }, {Wn } near the 
theoretical solution ("near" in the sense that the threshold conditions (4.3), (4.4) 
hold). For the implications of this localized definition of stability, see [7, 8, 3]. 
For applications of the notion of stability threshold to other discretizations, see 
[13, 4, 11]. 

We now turn to the study of the consistency of (2.8). The truncation errors 
9-nn = 0, 1, ... , N, are the residuals in the theoretical solution u n , defined 
as in (4.1) or (4.2): 

(4.9) ,f0 o0- 

(4. 10) 9 n = u2 n+_ 4+ 4- k4 

( 1 n+1 = k (un+ -2un + un-i) + I{D4Un+l + 2D4un + D 4un-1 
(4.11) 24 

-D un-D (un), n = 1, 2, ..., N-1. 
From (4.11) we get 

D52[-n+l = D-2 [k-2(un+ - 2un + un-1)] 

(4.12) + 'I{D2Un+i + 2D U + D Un} 

_ U 
n 

+ [un],^ _(Un)2[(Un)2]^1, n = 
1,5 2,5 .... , N- 1. 

On the other hand, integration in (2.1) leads to 

= a-xUtt 2u+ u-l(U) + U2 + (u), 

a result that when restricted to the grid and subtracted from (4.12) implies that 

D2g n+1I= n+1 +Tn+1 +Tn+1 +Tn+1 +Tn+1 +Tn+1 n=1525... D YS = 1 +T2 +13 +14 +15 +16 , 
where, with rh denoting, as before, grid restriction, 

Tn+1 D-2 2 n+1 n =D~ D-[AK-(un~ _2un + unl)-rhutt],' 

-I2 -2u-r x 
T3 (=D rhu - rhOx Ut +1 
1n+1 1 {(D2Un+l _rhO2un) + 2(DU-rhOXu ) 

2 n-i 2 n-i 
+ (D u rhaxu )}, 

1n+1 =r 2 n+1 2 n 2 -1 ), 
4 4 h(0x~ 

Ts += (-[u ]07 + I(un)), 

T 6+ (-[(Un)2]- + l((Un)2))1. 

For the first and fourth term, which are linked to the discretization in time, we 
can write maxn l iT n+ 1 = &(k2), maxn 1 14 n+11I = &(k2) if, say, uxxtt and utttt 
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are bounded in O< x < 1, 0 < t < T. The remaining terms T2n+, T3n+, 

Tn+, T6n+ come from the discretization in space. It is in these terms that the 
accuracy of the pseudospectral technique should manifest itself. For instance, 
by reasoning as in the proof of Lemma 2.2 in [14], it is easily shown that, if 
utt(I tn) belongs to the periodic Sobolev space Hs, s > 1/2, then I T n+111 < 

CshsHlutt(., tn)IIHs. Thus, for utt sufficiently smooth, JIT n+111 = (hs), for 
any s > 0 (in fact, this term may even be exponentially small, see [14]). In a 
similar way, maxn I T n+111 is 6(hs), if u(., tn) is in Hs+2 uniformly in t [14, 
Lemma 2.2]. Finally, the aliasing errors JIT n+111, JIT n+1 1 are (hs) if u, U2 

respectively are in Hs, uniformly in t. To sum up, for the truncation error it 
is possible to derive bounds 

(4.13) max I|D ' I I= (k + hs), h, k -+ O, 
1<n<N-1 

provided that the theoretical solution u is sufficiently smooth. Furthermore, it 
would also be possible to replace the term hs by an exponential term exp(- 1 /h) 
under further smoothness assumptions. 

We now investigate the behavior of the truncation errors -0, g associ- 
ated with the starting values of the algorithm. In view of the structure of the 
right-hand side of (4.5), S9-, S contribute to the bound for the global error 
through (31 

I 
I, 30) I IETherefore, we should require 

(4.14) 11(g, 0 IIE = &(k2+hs), . h k - O 

if the error in approximating the initial conditions is not to dominate over the 
truncation error of (2.8). Note that, by (3.7), the estimate (4.14) holds if a is 
chosen to be the restriction u0 of u0 and ft satisfies 

(4.15) 1 1 (U' - u?)1 k - 2IE = s(k2+ hs), h k - O. 

The relation (4.15), in turn, holds if u is smooth and f? is taken to be the grid 
restriction of the following Taylor expansion of ut(., k/2): 

(4.16) (ut + (k/2)ut)lt=o0 

Note that utt (t = 0) is available from differentiation of u0 with respect to x in 
the differential equation (2.1). Alternatively, the x-derivatives of u0 required 
can be replaced by pseudospectral differences. 

We are now in a position to prove the convergence of the method. 

Theorem 4.2. Suppose that the hypotheses of the stability theorem 4.1 hold. As- 
sume that the choice of starting vectors a, Il and the smoothness of the theo- 
retical solution guarantee that (4.13)-(4.14) hold with s > 1/2. Then 

max IIUn+ -un+1 ,U -un 1 _ E=(k2+ hs) h, k -+, 
1<n<N-1 

so that in particular the following L2-estimate holds: 

max I uIn -un&H(k 2+hs) h,k-+0. 
O<n<N 
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Proof. Basically, we apply the stability bound with the choice Vn = Un, Wn = 
un, n = 0, 1, ... , N. However, it is not clear that, with this choice, the 
threshold conditions (4.4) hold. It is then necessary to apply the main theorem 
of [7], based on an important lemma due to Stetter [12, Lemma 1.2.1]. D 

It is of course clear that, for u sufficiently smooth, the estimates &(hs) for 
the spatial contribution can be replaced by exponential estimates (exp(- 1 /h)). 

Remark. As a first step in the analysis in this section, the differential equation 
and the numerical method have been integrated twice with respect to x. This 
device was introduced to alleviate the difficulties found in the stability analysis 
of the nonlinear term: dealing with (Vn)2 - (Wn)2 is easier than dealing with 
D 2(Vn)2-D 2(Wn )2 . As a result, our energy norm is an L -norm of u combined 
with a negative norm of Ut. This should be compared with the energy norm 
in [8]: there, no integration with respect to x is necessary and convergence is 
proved in H2 for u and L2 for ut . 

5. NUMERICAL EXPERIMENTS 

The pseudospectral scheme analyzed above has been tested in the long-time 
integration of solitary waves and collisions of solitary waves. 

The solitary wave of the GB equation is given by 

(5.1) u(x, t) = -Asech [(P/2)( - 0)], 4 =x-ct, 
where 40 and P are real parameters, 0 < P < 1, and the amplitude A and 
velocity c of the wave are related to P through the formulas 

A= 3P /2, c = (1 P2)112 

Equation (5. 1 ) shows that the solitary waves decay exponentially as Ixi o- . 

Therefore, it is possible to use the periodic pseudospectral scheme (2.8) on an 
interval [XL, XR], where the artificial boundaries are located far out enough for 
the theoretical solution to satisfy the conditions 

(O/Ox')u(xLt) = (O/Ox<)u(xR, t), < t < T i =0,1,2,3, 

except for a negligible remainder. 
The scheme was implemented in single precision on a VAX- 11/780 machine 

with a VAX-1 1 FORTRAN compiler. The Fourier transforms were carried out 
by the Cooley-Tuckey [2] algorithm coded by us in FORTRAN. 

TABLE 1 

Single soliton error 

2J h k = 0.8 k = 0.4 k = 0.2 k = 0.1 
32 2.5 0.0805 0.0729 0.0717 0.0715 
64 1.25 0.0328 0.0078 0.0019 0.0005 

128 0.625 unstable 0.0078 0.0019 0.0005 
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Table 1 corresponds to a single soliton (5.1) with a (moderate) amplitude 
A = 0.5 and an initial phase 40 = 0. The missing starting level U1 was 
obtained as in (4.16), boundaries were placed at XL= -40, XR= 40, and the 

integration was followed up to T = 40. The table provides the L -errors at 
the final time. 

Note that, for 2J = 32, a reduction in k does not significantly change the 
error. This shows that for this value of J the error orginates, almost entirely, 
from the space discretization (i.e., the results given by the scheme are the same 
as those of the time-continuous version of the pseudospectral method). How- 
ever, when 2J is doubled to 2J = 64, the picture is different: halving k results 
in a division by 4 of the error, showing that now the space discretization is 
far more accurate than the integration in time. This is confirmed by the fact 
that a further doubling of 2J from 64 to 128 has no effect on the error for 
k > 0.4. For 2J = 128, k = 0.8, we have observed marked solution growth. 
This does not contradict the stability theorem 4.1, since that result holds only 
for k small enough with respect to the mesh ratio. Observe that in this and 
later experiments the unstable runs correspond to situations where a large value 
of k is combined with a large value of r. Before leaving Table 1, we would 
like to emphasize that the great gain in accuracy observed when comparing the 
two runs 2J = 32, k = 0.1 and 2J = 64, k = 0.1 nicely illustrates the 
consistency advantages of the spectral technique. 

TABLE 2 
Collision errors/pseudospectral 

2J h k = 0.8 k = 0.4 k = 0.2 
32 3.75 0.0848 0.0821 0.0816 

(0.8) (1.8) (3.6) 
64 1.875 0.0053 0.0014 0.0005 

(1.7) (3.3) (6.6) 

Table 2 corresponds to a collision of two solitons of equal (small) ampli- 
tude A, = A2 = 0.25, initially located at x = -20 and x = 20, respectively. 
Since the amplitudes are small, the solitons emerge from the interaction with- 
out changes in shape or velocity. The theoretical solution is given by a rather 
complicated expression that can be seen in [9] or [10]. Again, T = 40, but now 
XL = 60, XR = 60, and U was taken from the theoretical solutions. The ta- 

L~~~~~~ 
ble provides the L 2-errors at the final time, along with the corresponding CPU 
times in seconds (quantities in parentheses). The spectral accuracy property is 
again clearly visible and, in fact, the errors for 2J = 128 (not given in the 
table) are identical to those for 2J = 64. 
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In order to gain some appreciation of the performance of algorithms based 
on spatial finite differences, we have implemented the scheme 

k2 un+l1 2 n +Un-i 11 4nl+2 *4Un +D*4Un- I 
52) 1J (Un~ -2U ?U )= _ l{D*4Un+ +2D U H-D U } 

(5.2) 42n *2n 

+ D U + D (Un)2, 

where D*2 , D*4 are the standard central difference discretizations of 02/0x2 
O 4/0x4, respectively. Note that (2.8) and (5.2) are identical as far as the time- 
integration is concerned. The computation of Un+l in (5.2) requires the so- 
lution of a linear system whose matrix can be factored once and for all at the 
beginning of the time-stepping. To simplify the structure of this matrix, (5.2) 
was implemented with the boundary conditions u = ux= 0 at x = XL, XR, 

rather than with periodicity conditions. This is a standard practice in this sort 
of problem (cf., e.g., the experiments in [11]). The method (5.2) is clearly 
second-order accurate in space and time. Furthermore, it can be shown to be 
stable in the sense of Theorem 4.1. 

TABLE 3 
Collision errors/finite differences 

2J h k = 0.8 k = 0.4 k = 0.2 
128 0.9375 0.0407 0.0401 0.0409 

(0.6) (1.1) (2.3) 
256 0.46875 unstable 0.0092 0.0092 

(4.1 * **) (8.2 * **) 

Table 3 corresponds to the application of (5.2) to the collision experiment 
that was integrated before by the pseudospectral method. Here we give results 
for 2J = 128, 256, as those for 2J = 32, 64 are very inaccurate. Note 
the (h 2) behavior of the error. The stars on the CPU times mean that the 
run was carried out in double precision, since the single-precision results were 
badly affected by roundoff errors. A comparison of the errors in Tables 2 and 
3 shows that for given h and k, the pseudospectral scheme is definitely more 
accurate than its finite difference counterpart. When computer times are taken 
into account, finite differences do well if low accuracy is required (for instance, 
they can give errors below 0.05 with 0.6 seconds of CPU). However, if smaller 
errors are required (say below 0.005 ), the pseudospectral method should be 
preferred. It should also be kept in mind that a better coding of the FFT would 
further enhance the efficiency of the pseudospectral algorithm. 

ACKNOWLEDGMENT 

This work is part of the Project PB-86-0313 supported by "Fondo Nacional 
para el desarrollo de la Investigaci6n Cientifica y Thcnica." 



122 J. DE FRUTOS, T. ORTEGA, AND J. M. SANZ-SERNA 

BIBLIOGRAPHY 

1. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid 
dynamics, Springer-Verlag, New York, 1988. 

2. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier 
series, Math. Comp. 19 (1965), 297-301. 

3. J. de Frutos and J. M. Sanz-Serna, h-dependent stability thresholds avoid the need for a 
priori bounds in nonlinear convergence proofs, Computational Mathematics III, Proc. Third 
Internat. Conf. held in Benin City, Nigeria, January 1988 (S. 0. Fatunla, ed.), Boole Press, 
Dublin (to appear). 

4. , Split-step spectral schemes for nonlinear Dirac systems, J. Comput. Phys. 83 (1989), 
407-423. 

5. B. Fornberg, On a Fourier method for the integration of hyperbolic equations, SIAM J. 
Numer. Anal. 12 (1975), 509-528. 

6. D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods: Theory and applica- 
tions, SIAM, Philadelphia, PA, 1977. 

7. J. C. L6pez-Marcos and J. M. Sanz-Serna, A definition of stability for nonlinear problems, 
Numerical Treatment of Differential Equations, Proc. Fourth Seminar "NUMDIFF-4" held 
in Halle 1987 (K. Strehmel, ed.), Teubner-Texte zur Mathematik, Leipzig, 1988, pp. 216- 
226. 

8. , Stability and convergence in numerical analysis. III: Linear investigation of nonlinear 
stability, IMA J. Numer. Anal. 7 (1988) 71-84. 

9. V. S. Manoranjan, A. R. Mitchell, and J. LL. Morris, Numerical solution of the "good" 
Boussinesq equation, SIAM J. Sci. Statist. Comput. 5 (1984), 946-957. 

10. V. S. Manoranjan, T. Ortega, and J. M. Sanz-Serna, Soliton and anti-soliton interactions in 
the "good" Boussinesq equation, J. Math. Phys. 29 (1988), 1964-1968. 

11. T. Ortega and J. M. Sanz-Serna, Nonlinear stability and convergence of finite-difference 
methods for the "good" Boussinesq equation, Numer. Math. 58 (1990), 215-229. 

12. H. J. Stetter, Analysis of discretization methods for ordinary differential equations, Springer, 
Berlin, 1973. 

13. E. Suli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier- 
Stokes equation, Numer. Math. 53 (1988), 459-484. 

14. E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM 
J. Numer. Anal. 23 (1986), 1-10. 

15. T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evo- 
lution equation. II: Numerical nonlinear Schrodinger equation, J. Comput. Phys. 55 (1984), 
203-230. 

16. R. G. Voigt, D. Gottlieb, and M. Y. Hussaini (eds.), Spectral methods for partial differential 
equations, SIAM, Philadelphia, PA, 1984. 

17. J. A. C. Weideman and B. M. Herbst, Split-step methods for the solution of the nonlinear 
Schrodinger equation, SIAM J. Numer. Anal. 23 (1986), 485-507. 

DEPARTAMENTO DE MATEMATICA APLICADA Y COMPUTACION, FACULTAD DE CIENCIAS, UNI- 

VERSIDAD DE VALLADOLID, VALLADOLID, SPAIN 


